
Practical Experiences with

the Fortran Pthreads API

Clay P. Breshears1

Center for High Performance Software Research
Rice University

Phu Luong2

Center for Subsurface Modeling
University of Texas, Austin

Abstract

With the growing popularity of symmetric multiprocessors (SMPs), shared-memory
programming models have become more important. Of particular relevance to scien-
ti�c programmers will be those paradigms that can be used within message-passing
codes. POSIX Threads (Pthreads) is one such shared-memory programming model.
While only de�ned for use within C programs, the Fortran API to Pthreads (FPTHRD)
developed at the ERDC MSRC gives Fortran programmers access to the Pthreads
library functions.

During development of the Fortran API, small problems, focused on very speci�c func-
tionality, were coded and run to demonstrate the potential e�ectiveness of Pthreads
on numerical computations. Taking the next logical step, threaded and concurrent
programming approaches were applied to a complete, production-level application
using the FPTHRD package on the SGI Origin 2000 at the ERDC MSRC. The code
used in this study is a multiblock grid version of the Princeton Ocean Model (MG-
POM) coastal ocean circulation model. This code uses MPI for processing individual
grid blocks on separate processors and sharing of data between blocks.

The process used to modify the MGPOM code for concurrent computations within
MPI processes is described. This includes pro�ling to identify sections of code that
could bene�t from threading and dependency analysis of loops included within se-
lected routines. Test runs with only a single subroutine of the MGPOM code modi�ed
for threaded computation have shown a 22.5% speedup. Code modi�cations to achieve
these results took less than 15 minutes. Further execution time reductions as other
routines are modi�ed for concurrent execution have been demonstrated.

1ERDC MSRC PET On-site Scalable Parallel Programming Tools Lead
2ERDC MSRC PET On-site Environmental Quality Modeling Lead



Introduction

Pthreads is a POSIX standard library [4] for expressing concurrency on single pro-
cessor computers and symmetric multiprocessors (SMPs). Since many scienti�c com-
putations contain opportunities for exploiting functional, or task-level concurrency,
many Fortran applications would bene�t from multithreading. However, as useful
as the Pthreads standard is for concurrent programming, a Fortran interface is not
de�ned. This de�ciency was recti�ed with the development of a Fortran 90 API to
Pthreads (FPTHRD) [3].

For many programmers that have been working with distributed memory models, such
as MPI, shared memory, multithreaded programming may be unfamiliar. While the
data decomposition used within a problem may be similar between the two models,
the sharing of data and synchronization|handled automatically via message pass-
ing routines|between threads is the responsibility of the programmer. Fortunately
there are standard programming techniques that can be used to facilitate sharing and
synchronization between threads.

Some of these standard methods are examined and applied to a production quality
ocean circulation model. This code, MGPOM, is a modi�cation of the Princeton
Ocean Model (POM) that incorporates a multiblock grid [1]. In the section entitled
\MGPOM Code" a brief outline of the code and how multiblock grids have been
applied to it is presented. The \Pthreads and the Fortran API" section gives a
summary of the relevant functionality within the Pthreads library and details of the
FPTHRD package. The \How to Thread Existing Codes" section details how to apply
Pthreads to existing codes. Examples from the development and implementation of
the multithreaded MGPOM code will be used for illustration. The performance
improvements from running this threaded code are given in the \Performance of
Threaded POM" section.

MGPOM Code

The coastal ocean is a region receiving a great deal of attention owing to an in-
creased utilization for human habitation, aquatic development, and military opera-
tions. These activities require a knowledge of dynamic and thermodynamic struc-
tures of the coastal regions such as water circulation, ocean wave dynamics, storm
surges, and evolution of seawater temperature and salinity. The POM is a three-
dimensional, primitive equation, time-dependent, � coordinate, free surface coastal
ocean circulation model. The model primitive equations used describe the velocity,
surface elevation, salinity, and temperature �elds in the ocean. The ocean is assumed
to be hydrostatic and incompressible (Boussinesq approximation).



Over the years, the traditional one-block rectangular grid has been used for ocean
circulation modeling. This technology encounters diÆculty on computational grids
with high resolution owing to the large memory and processing requirements. For a
large body of water with complicated coastlines, the number of grid points used in
the calculation (water points) is often the same or even smaller than the number of
unused grid points (land points). It is known that domain decomposition can be used
to partition the traditional one-block grid into sub-domains that reduce the unused
grid points and improve performance of the ocean model [9]. MPI [10] can be used
to parallelize this type of computation by assigning each sub-block to a di�erent MPI
process. Communication is then used to synchronize data in the overlap regions of
each block a appropriate places within the code.

A multiblock grid generation technique and parallel implementation of the MGPOM
ocean circulation code were proposed and used e�ectively in [7]. The multiblock grid
generation technique allows for the elimination of blocks composed mainly of land grid
points. However, focusing on the elimination of land points from the new data set can
result in blocks of widely varying size and the potential for severe load imbalance.
For this study, threads shall be used to assist in restoring a better load balance
between MPI processes. That is, rather than assign blocks to threads, threads shall
be used in order to speed up execution within a block. Many of the same problems
that would result from threading at the block level will be encountered by threading
computations within blocks.

Pthreads and the Fortran API

Pthreads is the library of POSIX standard functions for concurrent, multithreaded
programming. The POSIX standard only de�nes an application programming inter-
face (API) to the C programming language, not to Fortran. Many scienti�c and engi-
neering applications are written in Fortran. They would bene�t from multithreading,
especially on symmetric multiprocessors (SMP). In this section a brief background
on multithreaded programming and the use of Pthreads is presented. More complete
descriptions of the POSIX thread library can be found in the books by Butenhof [2],
Lewis and Berg [5], and Nichols et al [8]. Some of the relevant details of the interface
to that part of the Pthreads library that is compatible with standard Fortran are
presented.

Pthreads Details

Multithreading is a concurrent programming model. Multiple threads may execute
concurrently on a uniprocessor system. Parallel execution, however, requires multiple



processors sharing the same memory; i.e., SMP platforms. Threads perform concur-
rent execution at the task or function level. A single process composed of independent
tasks may break up these computations into a set of concurrently executing threads.
Threads are created to execute an assigned subroutine within the program. Since all
POSIX threads executing within a process are peers, there is no explicit parent-child
relationship unless the programmer speci�cally implements such an association.

With separate threads executing within the same memory address space, there is the
potential for memory access conicts; i.e., multiple threads attempt to concurrently
write to the same memory location (write/write conict) or one thread is reading a
memory location while another thread is concurrently writing to that same memory
location (read/write conict). Since scheduling of threads is largely non-deterministic,
the order of thread operations may di�er from one execution to the next. It is the
responsibility of the programmer to recognize these potential conicts and control
them.

Pthreads provides a mechanism to control access to shared, modi�able data. Those
portions of the code which allow access to shared data are known as critical regions.
Locks, in the form of mutual exclusion (mutex) variables, prevent threads from enter-
ing critical regions of the program while the lock is held by another thread. Threads
attempting to acquire a lock (i.e., enter a protected code region) will wait if another
thread is already in the protected region.

Pthreads provides an additional form of synchronization through condition variables.
Threads may pause execution until a particular condition has been met. (Where
threads wait for the speci�c condition of a mutex to be released by another thread,
condition variables allow a thread to wait on any feasible conditional expression the
programmer requires.) The update of the shared variables within a conditional ex-
pression is protected by a mutex associated with the condition variable. When a
thread waits for the signal on the condition variable, the mutex is relinquished to al-
low other threads to a�ect the conditional expression being waited on. When a thread
modi�es variables of the conditional expression, a signal to wakeup may be sent to a
thread waiting on the associated condition variable. The mutex is re-acquired after
this wakeup signal is received. Because spurious wakeup signals are not disallowed by
the POSIX standard and may be inadvertently received, good programming practice
dictates the conditional expression be tested within a WHILE loop construct whose
body contains a call to the condition variable wait routine. The conditional expres-
sion of this loop should evaluate to FALSE only when the condition being waited
upon has been met, TRUE otherwise. Thus, if the wakeup condition has not been
met, threads that receive incorrect signals will return to waiting since the while loop
test will evaluate to TRUE.



FPTHRD Details

The FPTHRD package consists of a Fortran module and �le of C routines. The
module de�nes Fortran derived types, parameters, interfaces, and routines to allow
Fortran programmers to use Pthread routines. The C functions provide the interface
from Fortran subroutine calls and map parameters into the corresponding POSIX
routines and function arguments.

The names of the FPTHRD routines are derived from the Pthreads root names; i.e.,
the string following the pre�x pthread . The string fpthrd replaces this pre�x.
In this way, a call to the Pthreads function pthread create() translates to a call
to the Fortran subroutine fpthrd create(). For consistency, all POSIX data types
and de�ned constants pre�xed with pthread (PTHREAD ) are de�ned with the
pre�x fpthrd (FPTHRD ) within the Fortran module.

The Fortran API preserves the order of the arguments of the C functions and provides
the C function value as the �nal argument. This trailing integer argument is most
often used to return an indicator of the termination status of the routine. Fortran
interface blocks also make it possible for the status parameter to be optional in all
but one Fortran routine calls.

An initial data exchange is required as a �rst program step before using other routines
in FPTHRD. Initialization is performed with a call to the routine fpthrd data exchange().
This routine is similar in functionality to the MPI INIT() routine from MPI. The
data exchange was found to be necessary because the parameters de�ned in Fortran
or constants de�ned in C are not directly accessible in the alternate language. One
such value of note is the parameter NULL passed from Fortran to C routines. This
integer is used as a signal within the C wrapper code to substitute a NULL pointer for
the corresponding function argument.

How to Thread Existing Codes

Unlike OpenMP loop-level directives, Pthreads supports concurrency at the task or
functional level. Thus, if entire subroutines from the code could be used for targets
of thread creation, only minor modi�cations of the code would be necessary. Oth-
erwise, e�orts to thread an existing code would be centered on locating those parts
of the code which could be executed concurrently and extracting the lines from the
program that implement these portions into utility subroutines that are then used
for thread creation and execution. It should be obvious that the former situation is
more desirable.



With the goal of using the existing subroutine structure of the code as much as
possible, the threading of existing codes involves three related phases:

1. Identify subroutines eligible for concurrent execution,

2. Locate concurrent execution within each subroutine, and

3. Insert calls to Pthreads routines to create and manage threads as well as enforce
mutual exclusion required by data decomposition.

In the following sections each of these actions will be examined. Experiences with
threading the MGPOM code will be used for examples of each phase.

Identifying Subroutines

As stated previously, one of the goals of the threading e�orts was to better load
balance the execution time of those blocks that have more data than others. Previous
studies [6] have used OpenMP for accomplishing this. Pro�ling the MGPOM code
revealed several routines that accounted for more than half of the total execution
time. The focus of the e�orts was concentrated on these routines.

Once candidate subroutines are identi�ed, each must be examined in more detail
to ascertain whether or not the subroutine could be run concurrently within each
MPI process. Methods for this determination are covered in more detail within the
next section. The structure of the subroutine and use of data is directly related to
how much labor will be involved in threading a chosen subroutine. In all cases, it is
common sense that the amount of e�ort required to thread a subroutine be compared
to the potential amount of speedup that is expected to result. It makes little sense
to put in many hours of work on a complex concurrency scheme within a subroutine
that does not signi�cantly a�ect the total amount of execution time.

Finding and Expressing Concurrency

After choosing subroutines for potential concurrent execution, each must be exam-
ined to determine if concurrent execution is feasible. For the MGPOM code, each
subroutine is �lled with many di�erent loops operating on arrays from COMMON blocks
and arrays sent as parameters. Thus, the potential for concurrency is dependent on
how those arrays are partitioned and assigned to threads. Code written without loops
may also provide concurrent execution potentials. Loops within a subroutine provide



the easiest construct for locating potential concurrency within a subroutine. However,
taking advantage of the identi�ed concurrency may require drastic restructuring of
the code such as encapsulation of concurrent functionality within new subroutines.

The most apparent case for �nding concurrency is within loops where individual
iterations may be executed independently. The loop iterations are simply divided
among the created threads. Which iterations are assigned to which threads may be
arbitrary or may be guided by some more orderly scheme based on the data. A static
assignment of iterations is easy to implement with Pthreads since a schedule of work
may be formulated onto a predetermined number of threads.

In order to implement a dynamic scheduling of iterations onto threads would in-
volve keeping track of which threads have been assigned which iterations along with
a mechanism to assign new iterations to threads that have completed a previous it-
eration. This dynamic scheduling is not overly diÆcult to implement and would be
useful in load balancing loop iterations that take di�erent amounts of computation
to complete.

In a more general case, subroutines may contain sequential code between loops. Once
a method for breaking up loop iterations among threads is devised, it must be decided
how to correctly execute the non-looped code. Owing to the assumption that all
threads execute the entire subroutine, this code may be executed concurrently with
multiple threads or may be designated for execution by a single thread. The former
case is most desirable since it would nominally involve innocuous duplication of local
variables and a duplication of e�ort as all threads computed the same results. The
latter case would require some mechanisms be coded in order to prohibit threads from
executing code sequences that would be assigned to a single thread; the complexity of
such mechanisms would depend upon the data decomposition and access restrictions
to any global data structures used within the a�ected portions of code.

For the MGPOM code, the static allocation model was used since all arrays used
within all loops of the chosen subroutines had the same dimensionality (at least
within the �rst two de�ned indices). A subroutine was written to determine the
number of threads to be used within the MPI process based on the size of the data
block assigned to the process and a �xed parameter value denoting the minimum
threshold of grid points that would require a thread be created. A two-dimensional
decomposition along the �rst two indices of the block (and consequently all other
pertinent arrays) into sub-blocks is then computed: one sub-block per thread to be
created. The indices within the block assigned to the process for each of the blocks
is saved into a global array. These index values are used by each thread created as
loop iteration bounds within each threaded subroutine.

Finding Data Dependencies



While each loop was able to execute all iterations independently within the subrou-
tines examined from MGPOM, this may not be the case with other codes. If there are
data dependencies that restrict the order in which loop iterations must be executed,
there may still be possibilities for concurrency within that loop. Such a situation
would require a more careful synchronization of thread execution in order to enforce
the correct iteration ordering.

Since there were no data dependencies within loops of the chosen MGPOM subrou-
tines, data dependencies between loops that resulted from the data decomposition
were checked next. In this case, potential read/write conicts were looked for; that
is, threads that access some array element that is within the assigned sub-block of
another thread. For such a conict the order of execution between the reading of an
array value and the update of that array value must be done in the correct order. (It
was determined that no write/write conicts were possible in the threaded subroutine
loops since all threads modi�ed only those array elements assigned to them.)

In order to �nd any inter-loop dependencies between threads, a listing of the read set
and write set of each loop was compiled and then compared. For the purposes with
MGPOM, the read set of a loop is the set of all array elements that are used on the
right hand side of an assignment statement (the value is \read" from memory) while
the write set is the set of all array elements that are used on the left hand side of an
assignment statement (the value is \written" into memory).

To identify quickly and completely all of the read and write sets internal to each loop
contained within a subroutine, a form was created. The form contained columns for
loop numbers and the write set and read set for each loop. It is not enough to know
just the names of the arrays within each set; the variables used to index these arrays
within the loop are also needed. After all the data have been entered for each loop of
a subroutine, the write set of each loop is compared to the read sets of all loops for
any overlap.

The decomposition of data determines where overlap can occur. In the case of MG-
POM, the data block assigned to each process that would create threads was divided
along the �rst and second dimensions; i.e., the I and J axes of the array. Thus, overlap
between threads under this static decomposition is possible when one thread accesses
an array element outside the assigned sub-block; that is, an array reference within
a loop contains an index of I+1, J+1, I-1, or J-1 has the potential of using a value
\on the other side of the fence." Should a read (write) set contain a potential overlap
index of an array contained within a write (read) set, there exists the potential for a
read/write conict and the order of execution between these loops must be preserved
for correct execution. (It is possible to have read/write conicts within the same loop.
A more complex solution is required to handle these cases than is described below.)



As a concrete example of this process, consider the code extract of two loops from
a subroutine of the MGPOM program shown in Figure 1. Figure 2 displays the
form entries that detail the write and read sets for these loops. Since the data
decomposition for the threaded version of MGPOM deals only with the �rst and
second indices, only overlap of array references containing index values of I�1 and
J�1 need be identi�ed. Examination of the data in Figure 2 shows that such an
overlap exists, speci�cally, A(I+1,J,K) or C(I,J+1,K) of the read set for loop 230
overlap with A(I,J,K) and C(I,J,K) of the write set of loop 315.

If loops are separated from one another by several other loops or intervening lines of
code, it might be assumed that the correct execution order will naturally occur. This
is not necessarily the case. As stated previously, the order of execution for concurrent
threads is non-deterministic and the actual execution order between threads cannot
be predicted. Good programming practice requires that even when the slightest
potential for some conict to occur is present, steps must be taken to speci�cally
ensure a correct execution ordering.

There are several methods available within the functionality of Pthreads or that can
be constructed with Pthreads routines to coordinate execution between threads. In
order to preserve simplicity within the threaded MGPOM code, a barrier was placed
between loops that had potential for read/write conicts. A description of the barrier
implementation used is given in the next section.

Barriers

Barriers are constructs that halt execution of threads until all threads have reached
the barrier. Once all threads have reached the barrier position within the code, they
are released to continue execution. Barriers are, thus, a synchronization point for all
threads. The module code for the barrier implementation used within MGPOM is
given in Appendix A. This code is a Fortran version of the barrier code written in C
found in [2].

The barrier derived type (BARRIER T) contains a mutex, a condition variable,
three integers and a LOGICAL toggle. The integers are used to denote whether a
barrier instance has been properly initialized, to keep track of the number of threads
that must reach the barrier before the threads are released, and to hold a count of
the number of threads that are currently waiting at the barrier. The mutex controls
access to the integer counts and the toggle as well as protects the condition variable.
The condition variable is used to put threads to sleep that have reached the barrier
and also as a mechanism to awaken those threads for continuation of execution when
the last thread arrives at the barrier. The toggle is used in the conditional expression
that ultimately allows threads to proceed from the barrier.



There are three routines within the barrier module. BARRIER INIT() initializes
the barrier and validates it. This routine includes the default initialization of the
mutex and condition variable as well as setting the number of threads that must
reach the barrier in order to trigger the release of all threads held. The BAR-
RIER DESTROY() routine uses Pthread functions to destroy the mutex and con-
dition variable and invalidate the barrier for future use.

When each thread arrives at the barrier call, BARRIER WAIT(), the mutex is
acquired and the count is decremented. If the count is not zero, the current value
of the toggle is copied into a local variable and the thread is put to sleep by calling
fpthrd cond wait() (which also releases the mutex). By comparing the local copy
of the toggle value with the global barrier toggle value, threads which might be
inadvertently woken up before the last thread has arrived will be put back to sleep.
When the �nal thread needed to reach the barrier arrives, the count is decremented to
zero. This �nal thread switches the value of the toggle, resets the count for the next
use of the barrier, and broadcasts a wakeup signal to all other held threads. Upon
wakeup from the broadcast signal, each thread will check the value of the global toggle
to their local copy, determine that the two values are di�erent, and proceed to the
code following the barrier call.

Pthread Calls

The �nal phase for the threading of existing codes is to insert calls to the the FPTHRD
subroutines. A technique for how some calls were encapsulated within the barrier
implementation was described above. Also, it is hoped that any other calls to syn-
chronization routines needed to ensure correct execution would be placed as needed.
The other major chore that needs to be completed is the insertion of code to create
threads that will execute the threaded subroutines.

The thread creation routine allows a single argument to be sent to the subroutine. If
the original subroutine that is to be threaded uses more than a single parameter, some
adjustments need to be made. It is recommended that all parameters to the target
subroutine be placed within a global module that can be USE-associated within the
subroutine and the calling routine. This would allow the single parameter to be used
to send an integer to the subroutine that would contain a unique thread number.
Within the MGPOM code, this unique thread number is used to index the global
index array for the loop bounds computed via the data decomposition subroutine.
One other possibility would be to create a derived type that holds all the di�erent
parameter values (as well as the thread number, if needed) required by the threaded
subroutine. In any event, some modi�cation of the subroutine header and handling
of parameters will be necessary.



The above is easily applied to subroutines that are called at a single point within the
overall code. However, it is common practice to employ a subroutine several times
within a code for performing the same computations on di�erent parameter sets. In
order to thread such a subroutine, a more involved code transformation is needed.
In this instance, as before, all parameters should be encapsulated within a module
for thread access. Where the subroutine header was modi�ed above, a number of
dummy subroutines are written which accept a single parameter. It is these dummy
subroutines that are used in thread creation, and their only function is to call the
target subroutine with the appropriate set of parameters.

For example, assume subroutine A is to be executed concurrently and is called from
three di�erent points within a program with three di�erent sets of parameters. All
three sets of parameters are de�ned within a module (or three separate modules
dependent upon code requirements) and three dummy subroutines, say A1, A2, and
A3, are created. Each of the di�erent dummy routines simply contains a call to
subroutine A with one of the original parameter sets. When creating threads for each
individual call to subroutine A, the threads are created using the appropriate dummy
subroutine.

If the code contains consecutive calls to the same routine with di�erent parameter sets,
a single dummy subroutine can be constructed that calls the subroutine with each
di�erent data set. Thus, the overhead of creating threads for multiple subroutines
is reduced to a single instance. Agglomerating any number of consecutive threaded
subroutines can be done within a single dummy subroutine. There is no need for the
subroutines to be the same. However, because some threads may complete execution
of one call to a subroutine before others, the programmer must ensure that there
are no data dependencies between di�erent calls to the routines called within the
dummy subroutine. A barrier call between subroutine calls would delay execution of
a subsequent routine until all threads had completed execution of the prior subroutine.

The code to create threads at the calling point of the threaded subroutine may simply
be a loop over the number of threads to be created that calls the fpthrd create
routine. In the most simple case, following this loop would be another loop to join
all the created threads. This second loop would pause the creating thread until all
created threads had �nished. Other activities can be pursued by the creating thread,
including taking a share of the work to be done. While this does reduce the amount
of thread resources that would be used, programming for any other activity of the
creating thread will require more complex coding.



Performance of Threaded POM

The physical geographic area chosen to run for this study is the Persian Gulf. This
area extends from 48 East to 58 East in longitude and from 23.5 North to 30.5 North
in latitude. Part of the Gulf of Oman is also included in this physical domain. The
twenty-block grid contains a total of 32,031 grid points with only 9,722 of those as
unused land points. The twenty-block grid was generated from a one-block grid by a
simple algebraic scheme using the EAGLEView software package [11]. Details of the
grid generation techniques used to create this multiblock grid data set can be found
in [7].

All runs reported in this section were performed on an SGI Origin 2000. These runs
computed a 10-day simulation of the Persian Gulf model. The MPI-only version of
MGPOM took 4325 seconds (�1.2 hours) using 20 processors.

The �rst subroutine chosen for threading was PROFQ, which was found to be the
dominant subroutine with regard to execution time during the pro�ling of the MG-
POM code. The PROFQ-threaded version of MGPOM took 3354 seconds (55.9 min-
utes) to run the 10-day Persian Gulf simulation. This represents a 22.5% reduction
in execution time for changes that took less than one half hour to make the code
modi�cations.

To date, four of the longest executing subroutines from the MGPOM code have been
threaded. This version of the code runs the 10-day simulation in 3066 seconds (51.1
minutes) or a 29.1% reduction of wallclock execution time over the MPI-only MGPOM
code.

For all threaded code runs, a total of 44 processors were requested from which 20
were used to run the MPI processes. It is assumed that the threads created during
the threaded MGPOM runs were migrated to the extra processors allocated to the
run.

Conclusion

The methods used to convert an ocean circulation model code for multithreaded
execution using the Fortran 90 API to Pthreads developed at the U.S. Army Engineer
Research and Development Center Major Shared Resource Center were presented. It
was also demonstrated that this threaded code runs faster than the original version.

The techniques described herein should be applicable to a large number of other sci-
enti�c codes. With some threads programming experience, it is felt that programmers



would be able to develop more complex threaded codes from current Fortran codes.

APPENDIX A|FPTHRD Barrier Code

MODULE BARRIER

!=======================================================================!

! Module for F90 Pthreads API to define a barrier for threads

!

! Written by Clay Breshears, 7 FEB 2000

!

! Based on Butenhof "Programming with POSIX Threads," Section 7.1.1

!=======================================================================!

USE FPTHRD

TYPE BARRIER_T

TYPE(FPTHRD_MUTEX_T) :: mutex ! control access to barrier

TYPE(FPTHRD_COND_T) :: cv ! wait for barrier

INTEGER :: valid ! set when valid

INTEGER :: threshold ! number of threads required

INTEGER :: counter ! current number of threads

LOGICAL :: cycle ! alternate cycles (T or F)

END TYPE BARRIER_T

INTEGER, PARAMETER, PRIVATE:: BARRIER_VALID = 14404350 ! 0xdbcafe

CONTAINS

SUBROUTINE BARRIER_INIT(B, C, STATUS)

!

! Initialize a barrier for use

!

TYPE(BARRIER_T), INTENT(OUT):: B

INTEGER, INTENT(IN):: C

INTEGER, INTENT(OUT):: STATUS

INTEGER:: ierr

B%threshold = C

B%counter = C



B%cycle = .FALSE.

CALL FPTHRD_mutex_init(B%mutex, NULL, STATUS)

IF (STATUS .NE. 0) RETURN

CALL FPTHRD_cond_init(B%cv, NULL, STATUS)

IF (STATUS .NE. 0) THEN

CALL FPTHRD_mutex_destroy(B%mutex, ierr)

RETURN

ENDIF

B%valid = BARRIER_VALID

RETURN

END SUBROUTINE BARRIER_INIT

SUBROUTINE BARRIER_DESTROY(B, STATUS)

!

! Destroy a barrier when done using it

!

TYPE(BARRIER_T), INTENT(INOUT):: B

INTEGER, INTENT(OUT):: STATUS

INTEGER:: ierr

IF (B%valid .NE. BARRIER_VALID) THEN

STATUS = EINVAL

RETURN

ENDIF

CALL FPTHRD_mutex_lock(B%mutex, STATUS)

IF (STATUS .NE. 0) RETURN

!

! Check whether any threads are known to be waiting; report

! "BUSY" if so

!

IF (B%counter .NE. B%threshold) THEN

CALL FPTHRD_mutex_unlock(B%mutex, STATUS)

STATUS = EBUSY

RETURN

ENDIF

B%valid = 0

CALL FPTHRD_mutex_unlock(B%mutex, STATUS)

IF (STATUS .NE. 0) RETURN

!



! If unable to destroy either mutex or cond_var object,

! return the error status

!

CALL FPTHRD_mutex_destroy(B%mutex, STATUS)

CALL FPTHRD_cond_destroy(B%cv, ierr)

IF (STATUS .EQ. 0) STATUS = ierr

RETURN

END SUBROUTINE BARRIER_DESTROY

SUBROUTINE BARRIER_WAIT(B, STATUS)

!

! Wait for all members of a barrier to reach the barrier. When

! the count (of remaining members) reaches 0, broadcast to wake

! all threads waiting.

!

TYPE(BARRIER_T), INTENT(INOUT):: B

INTEGER, INTENT(OUT):: STATUS

INTEGER:: CANCEL, TMP, ierr

LOGICAL:: CYCLE

IF (B%valid .NE. BARRIER_VALID) THEN

STATUS = EINVAL

RETURN

ENDIF

CALL FPTHRD_mutex_lock(B%mutex, STATUS)

IF (STATUS .NE. 0) RETURN

CYCLE = B%cycle ! Remember which cycle we're on

B%counter = B%counter - 1

IF (B%counter .EQ. 0) THEN

B%cycle = .NOT. B%cycle

B%counter = B%threshold

CALL FPTHRD_cond_broadcast(B%cv, STATUS)

!

! The last thread into the barrier will return status

! -1 rather than 0, so that it can be used to perform

! some special serial code following the barrier

!

if (STATUS .EQ. 0) STATUS = -1



ELSE

! Wait with cancellation disabled, because BARRIER_WAIT

! should not be a cancellation point.

!

CALL FPTHRD_setcancelstate(PTHREAD_CANCEL_DISABLE, CANCEL, ierr)

! Wait until the barrier's cycle changes, which means

! that it has been broadcast, and we don't want to wait

! anymore.

!

DO WHILE (CYCLE .EQV. B%cycle)

CALL FPTHRD_cond_wait(B%cv, B%mutex, STATUS)

IF (STATUS .NE. 0) EXIT

END DO

CALL FPTHRD_setcancelstate(CANCEL, TMP, ierr)

ENDIF

! Ignore an error in unlocking. It shouldn't happen, and

! reporting it here would be misleading -- the barrier wait

! completed, after all, whereas returning, for example,

! EINVAL would imply the wait had failed. The next attempt

! to use the barrier *will* return an error, or hang, due

! to whatever happened to the mutex.

!

CALL FPTHRD_mutex_unlock(B%mutex, ierr)

RETURN

END SUBROUTINE BARRIER_WAIT

Acknowledgments

This work was funded by the DoD High Performance Computing Modernization Pro-
gram ERDC Major Shared Resource Center through Programming Environment and
Training (PET), Contract Number: DAHC 94-96-C0002, Computer Sciences Corpo-
ration. Views, opinions, or �ndings contained in this report are those of the authors
and should not be construed as an oÆcial Department of Defense position, policy, or
decision unless so designated by other oÆcial documentation. Permission to publish
this paper is granted by the Headquarters, U.S. Army Corps of Engineers.



References

[1] A. F. Blumberg and G. L. Mellor. A Description of a Three-Dimensional Coastal
Ocean Circulation Model. Three-Dimensional Coastal Models, 1, 1987.

[2] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, Read-
ing, MA, 1997.

[3] Richard J. Hanson, Clay P. Breshears, and Henry A. Gabb. A Fortran Interface
to POSIX Threads. Technical Report 00-18, ERDC MSRC/PET, 2000.

[4] 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std 1003.1 1996 Edition] Information
Technology{Portable Operating System Interface (POSIX){Part 1: System Ap-
plication: Program Interface (API) [C Language] (ANSI), IEEE Standards Press,
1996.

[5] Bil Lewis and Daniel J. Berg. Multithreaded Programming with Pthreads. Sun
Microsystems Press, Mountain View, CA, 1998.

[6] P. V. Luong, C. P. Breshears, and H. A. Gabb. Execution and Load-Balance
Improvements in the CH3D Hydrodynamic Simulation Code. Technical Report
00-07, ERDC MSRC/PET, February 2000.

[7] Phu Luong, Clay P. Breshears, and Le N. Ly. Dual-Level Parallelism and Multi-
block Grids in Coastal Ocean Circulation Modeling. Technical Report 00-08,
ERDC MSRC/PET, 2000.

[8] Bradford Nichols, Dick Buttlar, and Jacqueline Prolux Farrell. Pthreads Pro-
gramming. O'Reilly and Associates, Sebastopol, CA, 1996.

[9] W. D. Oberpriller, A. C. Sawdey, M. T. O'Keefe, and S. Gao. Parallelizing the
Princeton Ocean Model Using TOPAZ. http://topaz.lcse.umn.edu.

[10] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Don-
garra. MPI|The Complete Reference: Volume 1, the MPI Core. The MIT
Press, Cambridge, MA, 1998.

[11] M. Stokes, M. Jiang, and M. Remotique. EAGLEview Grid Generation Package,
EAGLEView Version 2.4 Manual. Missisippi State University/National Science
Foundation Engineering Research Center for Computational Field Simulation,
December 1992.



Figure Captions

Figure 1 MGPOM Code Example for Read/Write Conicts

Figure 2 Write Set and Read Set Form for Loops 315 and 230



Figure 1 MGPOM Code Example for Read/Write Conicts

DO 315 K=2,KBM1

DO 315 J=1,JM

DO 315 I=1,IM

A(I,J,K)=A(I,J,K)

& -.50*(AAM(I,J,K)+AAM(I-1,J,K))*(H(I,J)+H(I-1,J))

& *(QB(I,J,K)-QB(I-1,J,K))*DUM(I,J)/(DX(I,J)+DX(I-1,J))

C(I,J,K)=C(I,J,K)

& -.50*(AAM(I,J,K)+AAM(I,J-1,K))*(H(I,J)+H(I,J-1))

& *(QB(I,J,K)-QB(I,J-1,K))*DVM(I,J)/(DY(I,J)+DY(I,J-1))

A(I,J,K)=.50*(DY(I,J)+DY(I-1,J))*A(I,J,K)

C(I,J,K)=.50*(DX(I,J)+DX(I,J-1))*C(I,J,K)

315 CONTINUE

DO 230 K=2,KBM1

DO 230 J=1,JM

DO 230 I=1,IM

QF(I,J,K)=(W(I,J,K-1)*Q(I,J,K-1)

& -W(I,J,K+1)*Q(I,J,K+1))/(DZ(K)+DZ(K-1))*ART(I,J)

& +A(I+1,J,K)-A(I,J,K)+C(I,J+1,K)-C(I,J,K)

QF(I,J,K)=((H(I,J)+ETB(I,J))*ART(I,J)*

& QB(I,J,K)-DT2*QF(I,J,K))/((H(I,J)+ETF(I,J))*ART(I,J))

230 CONTINUE



Figure 2 Write Set and Read Set Form for Loops 315 and 230

Loop Write Set Read Set

315 A(I,J,K) A(I,J,K) AAM(I,J,K) AAM(I-1,J,K) H(I,J) H(I-1,J)

C(I,J,K) QB(I,J,K) QB(I-1,J,K) DUM(I,J) DX(I,J) DX(I-1,J)

C(I,J,K) AAM(I,J-1,K) H(I,J-1) DVM(I,J) DY(I,J)

DY(I,J-1) DY(I-1,J) DX(I,J-1)

230 QF(I,J,K) W(I,J,K-1) Q(I,J,K-1) W(I,J,K+1) Q(I,J,K+1)

DZ(K) DZ(K-1) ART(I,J) A(I+1,J,K) A(I,J,K)

C(I,J+1,K) C(I,J,K) H(I,J) ETB(I,J) QB(I,J,K)

DT2 QF(I,J,K) ETF(I,J)


